Category: Rbse

  • Rajasthan Board RBSE Class 12 Maths Chapter आव्यूह

    Ex. 3.1

    प्रश्न 1.
    यदि आव्यूह A = [aij]2×4 हो तो A में अवयवों की संख्या लिखिए।
    हल :
    m x n क्रम वाले आव्यूह में अवयवों की संख्या mn होती हैं
    अतः दिये गये आव्यूह में अवयवों की संख्या = 8 है।

    प्रश्न 2.
    4 x 4 का इकाई का आव्यूह लिखिए।
    हल :
    4 x 4 इकाई का आव्यूह
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 2

    प्रश्न 3.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 3
    तो a का मान ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 3
    ∴ प्रश्नानुसार दोनों आव्यूह बराबर है अत: संगत अवयव भी बराबर होंगे।
    ∴ k + 4 = a ……(i)
    k – 6 = – 4 ……(ii)
    समीकरण (i) से,
    k = – 4 + 6
    = 2
    समीकरण (ii) से,
    a = k + 4 = 6
    ∴ a = 6.

    प्रश्न 4.
    6 अवयवों वाले आव्यूह के सम्भावित क्रम क्या होंगे ?
    हल :
    यदि किसी आव्यूह का क्रम m x n है तो उसमें mn अवयव होते हैं, अत: 6 अवयवों वाले सम्भावित क्रम 6 x 1, 1 x 6, 2 x 3 और 3 x 2 होंगे।

    प्रश्न 5.
    2 x 2 क्रम का आव्यूह A = [aij] ज्ञात कीजिए जिसके अवयव
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 5
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 5.1
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 5.2
    (iii) aij = 2i – 3j
    a11 = 2 x 1 – 3 x 1 = 2 – 3 = -1
    a12 = 2 x 1 – 3 x 2 = 2 – 6 = -4
    a21 = 2 x 2 – 3 x 1 = 4 – 3 = 1
    a22 = 2 x 2 – 3 x 2 = 4 – 6 = -2
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 5.3

    प्रश्न 6.
    एक 2 x 3 क्रम का आव्यूह A = aij ज्ञात कीजिए जिसके अवयव aij = \frac { 1 }{ 2 } |2i – 3j| हैं।
    हल :
    2 x 3 के आव्यूह में 2 पंक्तियाँ एवं 3 स्तम्भ होते हैं।
    अतः i = 1, 2 तथा j = 1, 2, 3
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 6

    प्रश्न 7.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 7
    हो, तो a वे b का मान ज्ञात कीजिए।
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 7
    दिये हुये आव्यूह समान हैं, अत: संगत अवयवों की तुलना करने पर
    a + b = 6 …(i)
    ab = 8 …(ii)
    समी. (i) से b = b – a समी. (ii) में रखने पर,
    a(6 – a) = 8
    ⇒ 6a – a² – 8 = 0
    ⇒ a² – 2a – 4a + 8 = 0
    ⇒ a² – 2a – 4a + 8 = 0
    ⇒ (a – 2)(a – 4) = 0
    अतः a = 2, 4
    ab = 8 तो b = 4, 2

    प्रश्न 8.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 8
    हो, तो x,y,z व p के मान ज्ञात कीजिए।
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 8
    संगत अवयवों की तुलना करने पर
    2x = 4 ⇒ x = 2
    3x + y = 5 ⇒ y = 5 – 3 x 2 = 5 – 6 = -1
    -x + z = – 4
    ⇒ 3y – 2p = – 3 ⇒ 2p = 3y + 3 = 3 x – 1 + 3 = 0
    अतः p = 0
    x = 2, y = – 1, z = – 2, p = 0.

    प्रश्न 9.
    a, b व c के किन मानों के लिए आव्यूह A तथा B समान आव्यूह हैं। जहाँ
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 9
    हल :
    दिया है, A = B
    RBSE Solutions for Class 12 Maths Chapter 3 Ex 3.1 9.1
    संगत अवयवों की तुलना करने पर
    a – 2 = b ⇒ a – b = 2 …(i)
    3 = c
    12c = 6b
    ⇒ b = \frac { 12\times 3 }{ 6 }  = 6
    ⇒ b = 6
    b + 2 = a
    a – b = 2
    a = 2 + b = 2 + 6 = 8
    अतः a = 8, b = 6, c = 3

    Rajasthan Board RBSE Class 12 Maths Chapter 3.2

    प्रश्न 1.
    यदि आव्यूह
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 1
    हो, तो A² ज्ञात कीजिए।
    हलः
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 1.1

    प्रश्न 2.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 2
    हो, तो (A – 2I). (A – 3I) ज्ञात कीजिए।
    हलः
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 2.1

    प्रश्न 3.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 3
    हो, तो AB ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 3.1
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 3.2

    प्रश्न 4.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 4
    हो, तो BA ज्ञात कीजिए जहाँ i = √-1
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 4.1

    प्रश्न 5.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 5
    तथा
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 5.1
    हो, तो आव्यूह A तथा B ज्ञात कीजिए।
    हलः
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 5.2
    (i) और (ii) को जोड़ने पर
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 5.3
    (i) और (ii) को घटाने पर
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 5.4

    प्रश्न 6.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 6
    हो, तो x तथा y ज्ञात कीजिए।
    हल :
    हल : संगत अवयवों की तुलना करने पर
    x + 2 = – 2
    ∴ x = – 4
    – y – x = 5 ⇒ y = – x – 5 = – (-4) – 5
    = 4 – 5 = -1
    अतः = – 4, y = – 1

    प्रश्न 7.
    आव्यूह A का क्रम 3 x 4 है तथा B इस प्रकार का आव्यूह है कि AT B एवं ABT दोनों ही परिभाषित है तो B का क्रम लिखिए।
    हल :
    ∴ A का क्रम 3 x 4 है।
    ∴ AT का क्रम 4 x 3 होगा
    परन्तु ATB तथा ABT परिभाषित है
    अत: B का क्रम भी 3 x 4 ही होगा।

    प्रश्न 8.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 8
    एक सममित आव्यूह है तो x का मान ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 8.1
    एक सममित आव्यूह है,
    अत: aij = aji, की तुलना करने पर
    a32 = a23 ⇒ – x = 4
    ∴ x = – 4

    प्रश्न 9.
    एक 3 x 3 क्रम को आव्यूह B = [bij] लिखिए जिनके अवयव bij = (i) (j) हैं।
    हल :
    B11 = 1 x 1 = 1
    B12 = 1 x 2 = 2
    B13 = 1 x 3 = 3
    B21 = 2 x 1 = 2.
    B22 = 2 x 1 = 4.
    B23 = 2 x 3 = 6
    B31 = 3 x 1 = 3
    B32 = 3 x 2 = 6
    B33 = 3 x 3 = 9
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 9

    प्रश्न 10.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 10
    तथा
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 10.1
    तो A + BT ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 10.2

    प्रश्न 11.
    आव्यूह A को सममित व विषम सममित आव्यूह के योग के रूप में व्यक्त कीजिए, जहाँ
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 11
    है।
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 11.1
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 11.2

    प्रश्न 12.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12
    हो तो सिद्ध कीजिए ।
    (i) (AT)T = A
    (ii) A + AT एक सममित आव्यूह है।
    (ii) A – AT एक विषम सममित आव्यूह है।
    (iv) AAT तथा ATA सममित आव्यूह है।
    हल :
    (i) (AT)T = A
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.1
    इति सिद्धम्।

    (ii) A + AT एक सममित आव्यूह है।
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.2
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.3
    अत: A + AT एक सममित आव्यूह है।
    इति सिद्धम्।

    (iii)
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.4
    अत: A – AT सममित आव्यूह है।
    इति सिद्धम

    (iv)
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.5
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 12.6
    अत: AT A सममित आव्यूह है।
    इति सिद्धम

    प्रश्न 13.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 13
    तथा 3A – 2B + C एक अशून्य आव्यूह है तो आव्यूह C लिखिए।
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 13
    अतः 3A – 2B + C = 0
    ∴ C = 2B – 3A + 0
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 13.1

    प्रश्न 14.
    एक 2×3 क्रम का आव्यूह B= |bij| लिखिए जिसके अवयव है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 14
    हल :
    दिया है, B = [bij] जिसके अवयव हैं।
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 14.1
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 14.2

    प्रश्न 15.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 15
    हों, तो ABC का प्रथम पंक्ति के अवयव ज्ञात कीजिए।
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 15.1
    अतः पहली पंक्ति का अवयव 8 है।

    प्रश्न 16.
    यदि आव्यूह
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 16
    हो तो AAT ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 16.1
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 16.2

    प्रश्न 17.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 17
    तो x का मान ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 17.1

    प्रश्न 18.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 18
    हो तो सिद्ध कीजिए कि
    B² – (a + d)B = (bc – ad)I2, जहाँ
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 18.1
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 18.2
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 18.3
    = (bc – ad)I2
    = R.H.S.
    इति सिद्धम्।

    प्रश्न 19.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 19
    हो तो (aA + bB) (aA – bB) को आव्यूह के रूप में ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 19.1

    प्रश्न 20.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 20
    हो, तो सिद्ध कीजिए कि
    (A – B)² ≠ A² – 2AB + B².
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 20.1
    A² – 2AB + B²
    = A . A – 2 . A . B + B . B
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 20.2
    समीकरण (i) और (ii) से
    (A – B)² ≠ A² – 2AB + B².
    इति सिद्धम्।

    प्रश्न 21.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 21
    तो k का मान ज्ञात कीजिए, जहाँ A² = kA – 2I2
    हल : दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 21.1

    प्रश्न 22.
    यदि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 22
    तथा i = √-1 निम्नलिखित सम्बन्धों का सत्यापन कीजिए
    (i) A² = B² = C² = I2
    (ii) AB = – BA = – C
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 22.1
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 22.2
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 22.3

    प्रश्न 23.
    याद
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 23
    तथा f(A) = A² – 5A + 7I हो, तो f(A) ज्ञात कीजिए।
    हल :
    दिया है,
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 23.1

    प्रश्न 24.
    सिद्ध कीजिए कि
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 24
    जबकि α – β = (2m – 1) \frac { \pi }{ 2 }  , m∈N
    हल :
    RBSE Solutions for Class 12 Maths Chapter 3 Additional Questions 24.1
    = cos (α – β) [cos α cos β sin α sin β – cos α cos β sin α sin β]
    = cos (α – β) x 0
    = 0
    = R.H.S.

  • RBSE SOLUTION CLASS 9 MATH CHAPTER 1

    • Chapter 1 Number systems

    प्रश्नावली 1.1 

    NCERT Solutions for Class 9 Maths Chapter 1 (Hindi Medium) 1.1 1
    NCERT Solutions For Class 9 Maths Hindi Medium 1.1 1.1
    NCERT Solutions for Class 9 Maths Chapter 1 (Hindi Medium) 1.1 3
    Class 9 Maths NCERT Solutions Hindi Medium 1.1 3.1

    Q4. नीचे दिए गए कथन सत्य हैं या असत्य? कारण के साथ अपने उत्तर दीजिए।
    (i) प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है।
    (ii) प्रत्येक पूर्णांक एक पूर्ण संख्या होती है।
    (iii) प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है।

    Solution:
    (i) प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है। (सत्य)
    कारण: क्योंकि पूर्ण संख्या में सभी प्राकृत संख्याएँ शामिल हैं |
    (ii) प्रत्येक पूर्णांक एक पूर्ण संख्या होती है। (असत्य)
    कारण: क्योंकि पूर्णांक में ऋणात्मक पूर्णांक भी होते हैं जबकि पूर्ण संख्याओं में कोई भी संख्या ऋणात्मक नहीं होता हैं |
    (iii) प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है। (असत्य)
    कारण : परिमेय संख्या में अन्य कई प्रकार के संख्याएँ आती है जिनकों पूर्ण संख्या के जैसे प्रदर्शित नहीं किया जा सकता है |

    प्रश्नावली 1.2

    Q1. नीचे दिए गए कथन सत्य हैं या असत्य हैं? कारण के साथ अपने उत्तर दीजिए।
    (i) प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है। 
    उत्तर:
    (i) प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है। (सत्य)
    कारण: क्योंकि वास्तविक संख्याओं में अपरिमेय संख्याएँ भी होती है |
    (ii) संख्या रेखा का प्रत्येक बिन्दु √m  के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
    उत्तर:
    (ii) संख्या रेखा का प्रत्येक बिन्दु √m  के रूप का होता है, जहाँ m एक प्राकृत संख्या है। (असत्य)
    कारण: संख्या रेखा पर दोनों ऋणात्मक एवं धनात्मक संख्याएँ होती है, परन्तु प्रत्येक बिंदु पर एक वर्गमूल संख्या हो यह संभव नहीं है |
    (iii) प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
    उत्तर:
    (iii) प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है। (असत्य)
    कारण: क्योंकि वास्तविक संख्याओं के समूह में परिमेय सा संख्याएँ एवं अपरिमेय संख्याएँ दोनों होती हैं | केवल अपरिमेय संख्या नहीं होती हैं |

    Q2. क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।
    उत्तर:
    सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय नहीं होते हैं,
    हम धनात्मक पूर्णांक 1, 2, 3, 4, 5, 6, 7, 8, और 9 का उदाहरण लेते है |
    √1 = 1 (परिमेय)
    √2 = √2 (अपरिमेय)
    √3 = √3 (अपरिमेय)
    √4 = 2 (परिमेय)
    √5 = √5 (अपरिमेय)
    √6 = √6 (अपरिमेय)
    √7 = √7 (अपरिमेय)
    √8 = √8 (अपरिमेय)
    √9 = 3 (परिमेय)
    उपरोक्त उदाहरण में हम देखते हैं कि 1, 4 और 9 की वर्गमूल क्रमश: 1, 2, और 3 है जो परिमेय संख्या है |

    Q3. दिखाइए कि संख्या रेखा पर √5  को किस प्रकार निरूपित किया जा सकता है।
    ​Solution:
    NCERT Maths Solutions For Class 9 Hindi Medium 1.2 3
    OA = 1 इकाई, AB = 1 इकाई,
    समकोण ΔAOB में, पाइथोगोरस प्रमेय से,
    OB2 = OA2 + AB2
    OB2 = 12 + 12
    OB2 = 2
    ​OB = √2
    अब समकोण ΔBOC में, पाइथोगोरस प्रमेय से,
    OC2 = OB2 + BC2
    OC2 = (√2)2 + 12
    OC2 = 2 + 1 = 3
    OC = √3
    अब समकोण ΔCOD में, पाइथोगोरस प्रमेय से,
    OD2 = OC2 + DC2
    OD2 = (√3)2 + 12
    OD2 = 3 + 1 = 4
    OD = √4 = 2
    अब समकोण ΔDOE में, पाइथोगोरस प्रमेय से,
    OE2 = OD2 + DE2
    OE2 = (2)2 + 12
    OE2 = 4 + 1 = 5
    OE = √5
    अब O को केंद्र और OE को त्रिज्या मानकर एक चाप खींचेगे जो संख्या रेखा को OE’ पर प्रतिच्छेद करता है जहाँ  OE = OE’ = है |

    प्रश्नावली 1.3 

    Q1. निम्नलिखित भिन्नों को दशमलव रूप में लिखिए और बताइए कि प्रत्येक का दशमलव प्रसार किस प्रकार का है:
    NCERT Solutions for Class 9 Maths Chapter 1 (Hindi Medium) 1.3 1
    Solution: 
    NCERT Class 9 Maths Hindi Medium Solutions 1.3 1.1

    NCERT Maths Class 9 Hindi Medium Solutions 1.3 2
    NCERT Solutions For Maths Class 9 Hindi Medium 1.3 2.1

    Maths NCERT Solutions Class 9 Hindi Medium 1.3 3
    Maths NCERT Class 9 Solutions Hindi Medium 1.3 3.1
    Maths Class 9 NCERT Solutions Hindi Medium 1.3 3.2
    Maths Solutions For Class 9 NCERT Hindi Medium 1.3 3.3
    NCERT Solutions for Class 9 Maths Chapter 1 (Hindi Medium) 1.3 3.4
    Solutions For Maths NCERT Class 9 Hindi Medium 1.3 3.5
    NCERT Solutions for Class 9 Maths Chapter 1 (Hindi Medium) 1.3 3.6
    Class 9th Maths NCERT Solutions Hindi Medium 1.3 3.7
    NCERT Maths Book Class 9 Solutions Hindi Medium 1.3 3.8
    Class 9 NCERT Solutions Maths Hindi Medium 1.3 3.9
    Solution: 
    और q पूर्णांक हैं जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है अर्थात ये सह-अभाज्य संख्याएं हैं और इनका सांत दशमलव प्रसार है |
    सांत दशमलव प्रसार के लिए q का अभाज्य गुणनखंड 2या 5n या 2m× 5के रूप का होना चाहिए |

    Q7. ऐसी तीन संख्याएँ लिखिए जिनके दशमलव प्रसार अनवसानी अनावर्ती हों |
    हल : सभी अपरिमेय संख्याएँ अनवसानी अनावर्ती दशमलव प्रसार देती है| इसलिए तीन उदाहरण हैं – √2, √3, √5 आदि |

    9th Class Maths NCERT Hindi Medium Solutions 1.3 3.10
    अर्थात 0.714285 ……. और 0.81818181… के बीच तीन अपरिमेय संख्याएँ हैं |
    (i) 0.72010010001……
    (ii) 0.751121231234……..
    (iii) 0.80145672434890………

    Q9. बताइए कि निम्नलिखित संख्याओं में कौन-कौन संख्याएँ परिमेय और कौन-कौन संख्याएँ अपरिमेय हैं |
    (i)  √23
    हल : अपरिमेय संख्या हैं |
    (ii) √225  = 15 
    हल : परिमेय संख्या है |
    (iii) 0.3796
    हल : परिमेय सख्या है |
    (iv) 7.478778 ….
    हल : अपरिमेय संख्या हैं |
    (v) 1.101001000100001…..
    हल : अपरिमेय संख्या हैं |

    प्रश्नावली 1.4 

    Q1. उत्तरोत्तर आवर्धन करके संख्या रेखा पर 3.765 को देखिये |
    हल : 
    CBSE Class 9 Maths Hindi Medium Solutions 1.4 1

    Q2. 4 दशमलव स्थानों तक संख्या रेखा पर 4.2626…. को देखिए |
    हल : 4 दशमलव स्थान तक 4.2626…. है |
    NCERT Solutions For Class 9 Maths Hindi Medium 1.4 2

    प्रश्नावली 1.5

    Maths NCERT Solutions Class 9 Hindi Medium 1.5 1
    Class 9 Maths NCERT Solutions Hindi Medium 1.5 1.1
    NCERT Maths Solutions For Class 9 Hindi Medium 1.5 2
    NCERT Class 9 Maths Hindi Medium Solutions 1.5 2.1
    NCERT Maths Class 9 Hindi Medium Solutions 1.5 2.2
    NCERT Solutions For Maths Class 9 Hindi Medium 1.5 2.3
    Maths NCERT Solutions Class 9 Hindi Medium 1.5 2.4
    Maths NCERT Class 9 Solutions Hindi Medium 1.5 3

    Q4. संख्या रेखा पर √9.3  को निरुपित कीजिए |
    हल :
    (i) एक 9.3 cm का रेखाखंड AB खींचिए और से 1 cm आगे बिंदु C तक बढाइये |
    (ii) इसप्रकार बने रेखाखंड AC का लंब समद्विभाजक खींचिए जो AC को बिंदु O पर काटती है |
    (iii) AO या CO को वृत्त की त्रिज्या मानकर एक अर्धगोला खींचिए |
    (iv) बिंदु B से AC पर लंब खींचिए जो अर्धवृत की परिधि को बिंदु D पर काटती है | BD या BE अभीष्ट √9.3 का संख्या रेखा पर माप है |
    Maths Class 9 NCERT Solutions Hindi Medium 1.5 4

    Maths Solutions For Class 9 NCERT Hindi Medium 1.5 5
    Solutions For Maths NCERT Class 9 Hindi Medium 1.5 5.1
    Class 9 NCERT Maths Solutions Hindi Medium 1.5 5.2
    NCERT Solutions For Class 9 Maths PDF Hindi Medium 1.5 5.3

    Q1. ज्ञात कीजिए :
    Class 9th Maths NCERT Solutions Hindi Medium 1.6 1

    Q2. ज्ञात कीजिए :
    NCERT Maths Book Class 9 Solutions Hindi Medium 1.6 2

  • RBSE Solutions for Class 8

    RBSE Solutions for Class 8 Pdf download all subjects in both Hindi Medium and English Medium are part of RBSE Solutions. Here we have given Rajasthan Board Books RBSE Class 8th Solutions

    BoardRBSE
    TextbookSIERT, Rajasthan
    ClassClass 8
    SubjectAll Subjects
    ChapterAll Chapters
    ExerciseTextbook & Additional
    CategoryRBSE Solutions
    RBSE Solutions for Class 8
    RBSE Solutions for Class 8

    RBSE Class 8 Solutions Rajasthan Board

    • RBSE Solutions for Class 8 Maths (गणित)
    • RBSE Solutions for Class 8 Science (विज्ञान)
    • RBSE Solutions for Class 8 Social Science (सामाजिक विज्ञान)
    • RBSE Solutions for Class 8 English (अंग्रेज़ी)
    • RBSE Solutions for Class 8 Hindi (हिंदी)
    • RBSE Solutions for Class 8 Sanskrit (संस्कृत)

    We hope the given RBSE Solutions for Class 8 Pdf download all subjects in both Hindi Medium and English Medium will help you. If you have any query regarding Rajasthan Board Books RBSE Class 8th Solutions Pdf, drop a comment below and we will get back to you at the earliest.

  • RBSE Solutions for Class 10 Maths गणित

    Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

    RBSE Solutions for Class 10 Maths गणित

    RBSE Solutions for Class 10 Maths Pdf download गणित in both Hindi Medium and English Medium are part of RBSE Solutions for Class 10. Here we have given Rajasthan Board Books RBSE Class 10th Maths Solutions Pdf

    • RBSE Solutions for Class 10 Maths in Hindi Medium
    • RBSE Solutions for Class 10 Maths in English Medium
    BoardRBSE
    TextbookSIERT, Rajasthan
    ClassClass 10
    SubjectMaths
    ChapterAll Chapters
    ExerciseTextbook & Additional
    CategoryRBSE Solutions
    RBSE Solutions for Class 10 Maths गणित
    RBSE Solutions for Class 10 Maths गणित

    Rajasthan Board RBSE Class 10 Maths Solutions in Hindi Medium

    RBSE Class 10 Maths Chapter 1 वैदिक गणित

    • Chapter 1 वैदिक गणित Ex 1.1
    • Chapter 1 वैदिक गणित Ex 1.2
    • Chapter 1 वैदिक गणित Ex 1.3
    • Chapter 1 वैदिक गणित Ex 1.4
    • Chapter 1 वैदिक गणित अन्य महत्त्वपूर्ण प्रश्न

    RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ

    • Chapter 2 वास्तविक संख्याएँ Ex 2.1
    • Chapter 2 वास्तविक संख्याएँ Ex 2.2
    • Chapter 2 वास्तविक संख्याएँ Ex 2.3
    • Chapter 2 वास्तविक संख्याएँ Ex 2.4
    • Chapter 2 वास्तविक संख्याएँ Additional Questions

    RBSE Class 10 Maths Chapter 3 बहुपद

    • Chapter 3 वास्तविक संख्याएँ Ex 3.1
    • Chapter 3 वास्तविक संख्याएँ Ex 3.2
    • Chapter 3 वास्तविक संख्याएँ Ex 3.3
    • Chapter 3 वास्तविक संख्याएँ Ex 3.4
    • Chapter 3 वास्तविक संख्याएँ Ex 3.5
    • Chapter 3 वास्तविक संख्याएँ Ex 3.6
    • Chapter 3 वास्तविक संख्याएँ Additional Questions

    RBSE Class 10 Maths Chapter 4 दो चरों वाले रैखिक समीकरण एवं असमिकाएँ

    • Chapter 4 दो चरों वाले रैखिक समीकरण एवं असमिकाएँ Ex 4.1
    • Chapter 4 दो चरों वाले रैखिक समीकरण एवं असमिकाएँ Ex 4.2
    • Chapter 4 दो चरों वाले रैखिक समीकरण एवं असमिकाएँ Additional Questions

    RBSE Class 10 Maths Chapter 5 समान्तर श्रेढ़ी

    • Chapter 5 समान्तर श्रेढ़ी Ex 5.1
    • Chapter 5 समान्तर श्रेढ़ी Ex 5.2
    • Chapter 5 समान्तर श्रेढ़ी Ex 5.3
    • Chapter 5 समान्तर श्रेढ़ी Additional Questions

    RBSE Class 10 Maths Chapter 6 त्रिकोणमितीय अनुपात

    • Chapter 6 त्रिकोणमितीय अनुपात Ex 6.1
    • Chapter 6 त्रिकोणमितीय अनुपात Additional Questions

    RBSE Class 10 Maths Chapter 7 त्रिकोणमितीय सर्वसमिकाएँ

    • Chapter 7 त्रिकोणमितीय सर्वसमिकाएँ Ex 7.1
    • Chapter 7 त्रिकोणमितीय सर्वसमिकाएँ Ex 7.2
    • Chapter 7 त्रिकोणमितीय सर्वसमिकाएँ Additional Questions

    RBSE Class 10 Maths Chapter 8 ऊँचाई और दूरी

    • Chapter 8 ऊँचाई और दूरी Ex 8
    • Chapter 8 ऊँचाई और दूरी Additional Questions

    RBSE Class 10 Maths Chapter 9 निर्देशांक ज्यामिति

    • Chapter 9 निर्देशांक ज्यामिति Ex 9.1
    • Chapter 9 निर्देशांक ज्यामिति Ex 9.2
    • Chapter 9 निर्देशांक ज्यामिति Additional Questions

    RBSE Class 10 Maths Chapter 10 बिन्दु पथ

    • Chapter 10 बिन्दु पथ Ex 10.1
    • Chapter 10 बिन्दु पथ Ex 10.2
    • Chapter 10 बिन्दु पथ Additional Questions

    RBSE Class 10 Maths Chapter 11 समरूपता

    • Chapter 11 समरूपता Ex 11.1
    • Chapter 11 समरूपता Ex 11.2
    • Chapter 11 समरूपता Ex 11.3
    • Chapter 11 समरूपता Ex 11.4
    • समरूपता Additional Questions

    RBSE Class 10 Maths Chapter 12 वृत्त

    • Chapter 12 वृत्त Ex 12.1
    • Chapter 12 वृत्त Ex 12.2
    • Chapter 12 वृत्त Ex 12.3
    • Chapter 12 वृत्त Ex 12.4
    • Chapter 12 वृत्त Additional Questions

    RBSE Class 10 Maths Chapter 13 वृत्त एवं स्पर्श रेखा

    • Chapter 13 वृत्त एवं स्पर्श रेखा Ex 13.1
    • Chapter 13 वृत्त एवं स्पर्श रेखा Ex 13.2
    • Chapter 13 वृत्त एवं स्पर्श रेखा Additional Questions

    RBSE Class 10 Maths Chapter 14 रचनाएँ

    • Chapter 14 रचनाएँ Ex 14.1
    • Chapter 14 रचनाएँ Ex 14.2
    • Chapter 14 रचनाएँ Additional Questions

    RBSE Class 10 Maths Chapter 15 वृत्त की परिधि एवं क्षेत्रफल

    • Chapter 15 वृत्त की परिधि एवं क्षेत्रफल Ex 15.1
    • Chapter 15 वृत्त की परिधि एवं क्षेत्रफल Ex 15.2
    • Chapter 15 वृत्त की परिधि एवं क्षेत्रफल Additional Questions

    RBSE Class 10 Maths Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन

    • Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन Ex 16.1
    • Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन Ex 16.2
    • Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन Ex 16.3
    • Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन Ex 16.4
    • Chapter 16 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

    RBSE Class 10 Maths Chapter 17 केन्द्रीय प्रवृत्ति के माप

    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.1
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.2
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.3
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.4
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.5
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.6
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.7
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Ex 17.8
    • Chapter 17 केन्द्रीय प्रवृत्ति के माप Additional Questions

    RBSE Class 10 Maths Chapter 18 प्रायिकता

    • Chapter 18 प्रायिकता Ex 18.1
    • Chapter 18 प्रायिकता Additional Questions

    Chapter 19 सड़क सुरक्षा शिक्षा

    Rajasthan Board RBSE Class 10 Maths Solutions in English Medium

    RBSE Class 10 Maths Chapter 1 Vedic Mathematics

    • Chapter 1 Vedic Mathematics Ex 1.1
    • Chapter 1 Vedic Mathematics Ex 1.2
    • Chapter 1 Vedic Mathematics Ex 1.3
    • Chapter 1 Vedic Mathematics Ex 1.4
    • Chapter 1 Vedic Mathematics Additional Questions

    RBSE Class 10 Maths Chapter 2 Real Numbers

    • Chapter 2 Real Numbers Ex 2.1
    • Chapter 2 Real Numbers Ex 2.2
    • Chapter 2 Real Numbers Ex 2.3
    • Chapter 2 Real Numbers Ex 2.4
    • Chapter 2 Real Numbers Miscellaneous Exercise
    • Chapter 2 Real Numbers Additional Questions

    RBSE Class 10 Maths Chapter 3 Polynomials

    • Chapter 3 Polynomials Ex 3.1
    • Chapter 3 Polynomials Ex 3.2
    • Chapter 3 Polynomials Ex 3.3
    • Chapter 3 Polynomials Ex 3.4
    • Chapter 3 Polynomials Ex 3.5
    • Chapter 3 Polynomials Ex 3.6
    • Chapter 3 Polynomials Miscellaneous Exercise
    • Chapter 3 Polynomials Additional Questions

    RBSE Class 10 Maths Chapter 4 Linear Equation and Inequalities in Two Variables

    • Chapter 4 Linear Equation and Inequalities in Two Variables Ex 4.1
    • Chapter 4 Linear Equation and Inequalities in Two Variables Ex 4.2
    • Chapter 4 Linear Equation and Inequalities in Two Variables Additional Questions

    RBSE Class 10 Maths Chapter 5 Arithmetic Progression

    • Chapter 5 Arithmetic Progression Ex 5.1
    • Chapter 5 Arithmetic Progression Ex 5.2
    • Chapter 5 Arithmetic Progression Ex 5.3
    • Chapter 5 Arithmetic Progression Miscellaneous Exercise
    • Chapter 5 Arithmetic Progression Additional Questions

    RBSE Class 10 Maths Chapter 6 Trigonometric Ratios

    • Chapter 6 Trigonometric Ratios Ex 6.1
    • Chapter 6 Trigonometric Ratios Miscellaneous Exercise
    • Chapter 6 Trigonometric Ratios Additional Questions

    RBSE Class 10 Maths Chapter 7 Trigonometric Identities

    • Chapter 7 Trigonometric Identities Ex 7.1
    • Chapter 7 Trigonometric Identities Ex 7.2
    • Chapter 7 Trigonometric Identities Additional Questions

    RBSE Class 10 Maths Chapter 8 Height and Distance

    • Chapter 8 Height and Distance Miscellaneous Exercise
    • Chapter 8 Height and Distance Additional Questions

    RBSE Class 10 Maths Chapter 9 Co-ordinate Geometry

    • Chapter 9 Co-ordinate Geometry Ex 9.1
    • Chapter 9 Co-ordinate Geometry Ex 9.2
    • Chapter 9 Co-ordinate Geometry Miscellaneous Exercise
    • Chapter 9 Co-ordinate Geometry Additional Questions

    RBSE Class 10 Maths Chapter 10 Locus

    • Chapter 10 Locus 10.1
    • Chapter 10 Locus 10.2
    • Chapter 10 Locus Miscellaneous Exercise
    • Chapter 10 Locus Additional Questions

    RBSE Class 10 Maths Chapter 11 Similarity

    • Chapter 11 Similarity Ex 11.1
    • Chapter 11 Similarity Ex 11.2
    • Chapter 11 Similarity Ex 11.3
    • Chapter 11 Similarity Ex 11.4
    • Chapter 11 Similarity Miscellaneous Exercise
    • Chapter 11 Similarity Additional Questions

    RBSE Class 10 Maths Chapter 12 Circle

    • Chapter 12 Circle Ex 12.1
    • Chapter 12 Circle Ex 12.2
    • Chapter 12 Circle Ex 12.3
    • Chapter 12 Circle Ex 12.4
    • Chapter 12 Circle Miscellaneous Exercise
    • Chapter 12 Circle Additional Questions

    RBSE Class 10 Maths Chapter 13 Circle and Tangent

    • Chapter 13 Circle and Tangent Ex 13.1
    • Chapter 13 Circle and Tangent Ex 13.2
    • Chapter 13 Circle and Tangent Additional Questions

    RBSE Class 10 Maths Chapter 14 Constructions

    • Chapter 14 Constructions Ex 14.1
    • Chapter 14 Constructions Ex 14.2
    • Constructions Additional Questions

    RBSE Class 10 Maths Chapter 15 Circumference and Area of a Circle

    • Circumference and Area of a Circle Ex 15.1
    • Circumference and Area of a Circle Ex 15.2
    • Circumference and Area of a Circle Ex 15.3
    • Circumference and Area of a Circle Additional Questions

    RBSE Class 10 Maths Chapter 16 Surface Area and Volume

    • Surface Area and Volume Ex 16.1
    • Surface Area and Volume Ex 16.2
    • Surface Area and Volume Ex 16.3
    • Surface Area and Volume Ex 16.4
    • Surface Area and Volume Miscellaneous Exercise
    • Surface Area and Volume Additional Questions

    RBSE Class 10 Maths Chapter 17 Measures of Central Tendency

    • Chapter 17 Measures of Central Tendency Ex 17.1
    • Chapter 17 Measures of Central Tendency Ex 17.2
    • Chapter 17 Measures of Central Tendency Ex 17.3
    • Chapter 17 Measures of Central Tendency Ex 17.4
    • Chapter 17 Measures of Central Tendency Ex 17.5
    • Chapter 17 Measures of Central Tendency Ex 17.6
    • Chapter 17 Measures of Central Tendency Ex 17.7
    • Chapter 17 Measures of Central Tendency Ex 17.8
    • Chapter 17 Measures of Central Tendency Miscellaneous Exercise
    • Chapter 17 Measures of Central Tendency Additional Questions

    RBSE Class 10 Maths Chapter 18 Probability

    • Chapter 18 Probability Ex 18.1
    • Chapter 18 Probability Additional Questions

    Chapter 19 Road Safety Education

  • RBSE Solutions for Class 10

    RBSE Solutions for Class 10 Pdf download all subjects in both Hindi Medium and English Medium are part of RBSE Solutions. Here we have given Rajasthan Board Books RBSE Class 10th Solutions

    RBSE Solutions for Class 10
    RBSE Solutions for Class 10

    RBSE Class 10 Solutions Rajasthan Board

    • RBSE Solutions for Class 10 Maths (गणित)
    • RBSE Solutions for Class 10 Science (विज्ञान)
    • RBSE Solutions for Class 10 Social Science (सामाजिक विज्ञान)
    • RBSE Solutions for Class 10 English (अंग्रेज़ी)
    • RBSE Solutions for Class 10 Hindi (हिंदी)
    • RBSE Solutions for Class 10 Sanskrit (संस्कृत)
    • RBSE Solutions for Class 10 Rajasthan Adhyayan (राजस्थान अध्ययन)
    • RBSE Solutions for Class 10 Physical Education (शारीरिक शिक्षा)
    • RBSE Solutions for Class 10 Information Technology (सूचना प्रौद्योगिकी)

    We hope the given RBSE Solutions for Class 10 Pdf download all subjects in both Hindi Medium and English Medium will help you. If you have any query regarding Rajasthan Board Books RBSE Class 10th Solutions Pdf, drop a comment below and we will get back to you at the earliest.

  • RBSE Maths Chapter 1: Exercise 1.1 Textbook Important Questions And Solutions

    RBSE Maths Chapter 1: Exercise 1.1 Textbook Important Questions And Solutions

    RBSE Maths Class 12 Chapter 1: Composite Functions Important Questions And Solutions

    RBSE Class 12 Maths Chapter 1 – Composite Functions Important questions and solutions are given here. All these questions and solutions have detailed explanations, which would be useful for the students to understand clearly. The RBSE Class 12 important questions and solutions, available at etsbuy , will help in scoring maximum marks in the exams.

    Chapter 1 of RBSE Class 12 contains three exercises, such that they cover several important concepts of functions, namely composition of a function, inverse function. Various questions on types of functions, i.e. constant, identity and equal functions are covered here. Besides, different types of properties are included in this chapter, such as domain, co-domain, range of a function.

    RBSE Maths Chapter 1: Exercise 1.1 Textbook Important Questions And Solutions

    Question 1: If f: R → R and g: R → R are the two functions defined below, then find (f∘g)(x) and (g∘f)(x).

    (i) f(x) 2x + 3, g(x) = x2 + 5

    (ii) f(x) = x, g(x) = |x|

    Solution:

    (i) Given,

    f(x) = 2x + 3 and g(x) = x2 + 5

    (f∘g)(x) = f(g(x))

    = f(x2 + 5)

    = 2(x2 + 5) + 3

    = 2x2 + 10 + 3

    = 2x2 + 13

    (g∘f)(x) = g(f(x))

    = g(2x + 3)

    = (2x + 3)2 + 5

    = 4x2 + 9 + 12x + 5

    = 4x2 + 12x + 14

    (ii) Given,

    f(x) = x and g(x) = |x|

    (f∘g)(x) = f(g(x))

    = f(|x|) = |x|

    (g∘f)(x)=g(f(x))

    = g(x) = |x|

    Question 2: If A = {a, b, c}, B = {u, v. w} and f: A → B and g: B → A are defined as f = {(a, v), (b, u), (c, w)}; g = {(u, b), (v, a), (w, c)}, then find (f∘g) and (g∘f).

    Solution:

    Given,

    f= {(a, v), (b, u), (c, w)}

    g= {(u, b), (v, a), (w, c)}

    Thus,

    f(a)= v and g(u) = b

    f(b)= u and g(v) = a

    f(c)= w and g(w) = C

    Now,

    (f∘g)(x) = f(g(x)]

    (f∘g)(u) = f(g(u)] = f(b) = u

    (f∘g)(v) = f(g(v)] = f(a) = v

    (f∘g)(w)= f[g(w)] = f(c) = w

    Therefore, (f∘g) = {(u, u), (v, v), (w, w)}

    (g∘f)(a) = g[f(a)] = g(v) = a

    (g∘f)(b) = g[fb)] = g(u) = b

    (g∘f)(c) = g[(c)] = g(w) = c

    Therefore, (g∘f) = {(a, a), (b, b), (c, c)}

    Question 3: If f: R+ → R+ and g: R+ → R+ are defined as f(x) = x2 and g(x) = √x, then find (g∘f) and (f∘g). Are they equal?

    Solution:

    Given,

    f : R+ → R+, f(x) = x2

    g : R+ → R+, g(x) = √x

    (gof)(x) = g[f(x)] = g(x2) = √(x2) = x

    (fog)(x) = f[g(x)] = f(√x) = (√x)2 = x

    Thus, (fog)(x) = (gof)(x) = x, ∀ x ∈ R+

    Hence, (fog) and (gof) are identity functions.

    Question 4: If f: R → R and g: R → R are two functions such that f(x) = 3x + 4 and g(x) = 1/3(x – 4), then find (f∘g)(x) and (g∘f)(x). Also, find (g∘g)(1).

    Solution:

    Given,

    f: R → R; f(x) = 3x + 4

    g: R → R; g(x) = ⅓(x – 4)

    (f∘g)(x) = f[g(x)]

    = f[(x – 4)/3]

    = 3[(x – 4)/3] + 4

    = x – 4 + 4

    = x

    (g∘f)(x) = g[f(x)]

    = g(3x + 4)

    = (3x + 4 – 4)/3

    = 3x/3

    = x

    Thus, (f∘g)(x) = (g∘f)(x) = x

    Now,

    (g∘g)(x) = g[g(x)]

    (g∘g)(1) = g[g(1)]

    = g[(1 – 4)/3]

    = g(-3/3)

    = g(-1)

    = (-1 – 4)/3

    = -5/3

    Therefore, (g∘g)(1) = -5/3

    Question 5: If three functions f, g, h defined from R to R in such a way that f(x) = x2, g(x) = cos x and h(x) = 2x + 3, then find the value of [h∘(g∘f)]√2π.

    Solution:

    Given,

    f(x) = x2, g(x) = cos x, h(x) = 2x + 3[h∘(g∘f)](x) = (h∘g)[f(x)]

    = h[g{f(x)}]

    = h[g(x2)]

    = h(cos x2)

    = 2 cos x2 + 3[h∘(g∘f)]√2π = 2 cos (√2π)2 + 3

    = 2 cos 2π + 3

    = 2 (1) + 3

    = 2 + 3

    = 5

    Question 6: If A = {1, 2, 3, 4}, f: R → R, f(x) = x2 + 3x + 1, g: R → R, g(x) = 2x – 3, then find

    (i) (f∘g)(x)

    (ii) (g∘f)(x)

    (iii) (f∘f)(x)

    (iv) (g∘g)(x)

    Solution:

    Given,

    f : R→ R, f(x) = x2 + 3x + 1

    g : R → R, g(x) = 2x – 3

    (i) (f∘g)(x) = f[g(x)]

    = f(2x – 3)

    = (2x – 3)2 + 3(2x – 3) + 1

    = 4x2 – 12x + 9 + 6x – 9 + 1

    = 4x2 – 6x + 1

    (ii) (g∘f)(x) = g[f(x)]

    = g(x2 + 3x + 1)

    = 2(x2 + 3x + 1) – 3

    = 2x2 + 6x + 2 – 3

    = 2x2 + 6x – 1

    (iii) (f∘f)(x) = f[f(x)]

    = f(x2 + 3x + 1)

    = (x2 + 3x + 1)2 + 3(x2 + 3x + 1)+1

    = x4 + 9x2 + 1 + 6x3 + 6x + 2x2 + 3x2 + 9x + 3 + 1

    = x4 +6x3 + 14x2 + 15x + 5

    (iv) (g∘g)(x) = g[g(x)]

    = g(2x – 3)

    = 2(2x – 3) – 3

    = 4x – 6 – 3

    = 4x – 9

    RBSE Maths Chapter 1: Exercise 1.2 Textbook Important Questions And Solutions

    Question 7: If A = {1, 2, 3, 4}, B = {a, b, c}, then find four one-one onto functions from A to B and also find their inverse function.

    Solution:

    Given

    A = {1, 2, 3, 4), B = {a, b, c, d}

    (a) f1 = {(1, a),(2, b), (3, c), (4, d)}

    f1-1 = {(a, 1), (b, 2), (c, 3), (d, 4)}

    (b) f2 = {(1, a), (2, c), (3, b), (4, d)}

    f2-1 = {(a, 1), (c, 2), (b, 3), (d, 4)}

    (c) f3 = {(1, d), (3, b), (2, a), (4, c)}

    f3-1 = {(d, 1), (b, 3), (a, 2), (c, 4)}

    (d) f4 = {(1, a), (3, d), (2, b),(4, c)}

    f4-1 = {(a, 1), (d, 3), (b, 2), (c, 4)}

    Question 8: If f: R → R, f(x) = x3 – 3, then prove that f-1 exists and find the formula of f-1 and the values of f-1(24), f-1(5).

    Solution:

    Given,

    f : R → R, f(x) = x3 – 3

    One-one/many-one:

    Let a, b ∈ R

    ∴ f(a) = f(b)

    ⇒ a3 – 3 = b3 – 3

    ⇒ a3 = b3

    ⇒ a = b

    Therefore, f(a) = f(b) ⇒ a = b

    Hence, f is a one-one function.

    Onto/into:

    Consider, y ∈ R (co-domain)

    f(x) = y

    ⇒ x3 – 3 = y

    ⇒ x = (y + 3)1/3 ∈ R, ∀ y ∈ R

    Thus, for each value of y, x exists in domain R.

    Therefore, the range of f = co-domain of f.

    ⇒ f is onto function.

    ‘f is one-one onto function.

    Hence, f-1: R → R exists.

    f-1(y) = x ⇒ f(x) = y ….(i)

    f(x)= x3 – 3

    ∴ x3 = 3 = y [From (i)]

    ⇒ x3 = y + 3

    ⇒ x = (y + 3)1/3

    ⇒ f-1(y) = (x + 3)1/3

    ⇒ f-1(x) = (x + 3)1/3, ∀ x ∈ R

    Substituting x = 24 in f-1,

    f-1(24)= (24 + 3)1/3

    = (27)1/3

    = 3(3 x 1/3)

    = 3

    Substituting x = 5 in f-1,

    f-1(5) = (5 + 3)1/3

    = (8)1/3

    = 2(3 x 1/3)

    = 2

    Question 9: If f: R → R is defined as f(x) = x3 + 5, then prove that f is bijective and also find f-1.

    Solution:

    Given,

    f : R → R, f(x) = x3 + 5

    One-one/onto:

    Let a, b ∈ R

    f(a) = f(b)

    ⇒ a3 + 5 = b3 + 5

    ⇒ a3 = b3

    a = b

    Thus, f(a) = f(b) ⇒ a = b, ∀ a, b ∈ R

    ∴ f is one-one function

    Onto/into:

    Let us take y ∈ R (co-domain)

    f(x) = y

    ⇒ x3 + 5 = y

    ⇒ x3 = y – 5

    ⇒ x = (y – 5)1/3 ∈ R, ∀ x ∈ R

    Here, pre-image for each value of y exists in the domain R.

    Thus, range of f = co-domain of f

    Therefore, the function ‘f’ is onto.

    Hence, f is one-one onto function.

    Now,

    f-1: R → R defined as f-1(y)= x ⇔ f(x) = y ….(i)

    ⇒ f(x) = y

    ⇒ x3 + 5 = y

    ⇒ x3 = y – 5

    ⇒ x = ( y – 5)1/3

    ⇒ f-1(y)= (y – 5)1/3 [From (i)]

    ⇒ f-1(x) = (x – 5)1/3

    Question 10: If A = {1, 2, 3, 4}, B = {3, 5, 7, 9}, C = {7, 23, 47, 79} and f: A → B, f(x) = 2x + 1, g: B → C, g(x) = x2 – 2, then write (g∘f)-1 and (f-1∘g-1) in the form of ordered pair.

    Solution:

    Given,

    A = {1, 2, 3, 4}, B = {3, 5, 7, 9}, C = {7, 23, 47, 79}

    f : A → B, f (x) = 2x + 1

    g : B → C, g(x) = x2 – 2

    (g∘f)(x) = g[f(x)]

    = g(2x + 1)

    = (2x + 1)2 – 2

    = 4x2 + 4x + 1 – 2

    = 4x2 + 4x – 1

    ∴ (g∘f)(x) = 4x2 + 4x – 1

    Substituting x = 1, 2, 3, 4:

    (g∘f) = {(1,7), (2, 23), (3,47),(4, 79)}

    ∵ (g∘f) is a bijection function.

    Therefore, the inverse of (g∘f) is possible.

    By the theorem, (g∘f)-1 = f-1∘g-1

    ⇒ (g∘f)-1 = {(7, 1), (23, 2), (47,3), (79,4)}

    ⇒ f-1∘g-1 = {(7,1), (23, 2) (47, 3), (79,4)}

    Question 11: If f : R → R, f(x) = ax + b, a ≠ 0 is defined, then prove that f is a bijection and also find the formula of f-1.

    Solution:

    Given,

    f : R → R and ax + b, a ≠ 0

    f-1 exists if f : R → R be a bijection function.

    One-one/many-one:

    Let p, q ∈ R

    f(p) = f(q)

    ⇒ ap + b = aq + b

    ⇒ ap = aq

    ⇒ p = q

    So, f(p) = f(q), ∀ p, q ∈ R

    ∴ f is a bijection function.

    Onto/into:

    Consider, f(x) = y, y ∈ R

    ax + b = y

    ⇒ x = (y – b)/a ∈ R

    Thus, the preimage of every value of y exists in the domain R.

    Therefore, ‘f’ is onto.

    Hence, we can say that range of f = co-domain of f.

    Also, f is a bijection function.

    Therefore, f-1 exists.

    Consider, if y ∈ R and f-1(y)= x, then f(x) = y.

    ⇒ ax + b = y

    ⇒ x = (y – b)/a

    ⇒ f-1(y) = (y – b)/a

    ⇒ f-1(x) = (x – b)/a, ∀ x ∈ R

    Therefore, f-1(x) = (x – b)/a

    Question 12: If f : R → R, f(x) = cos(x + 2), then does f-1 exist?

    Solution:

    Given,

    f : R → R, f(x) = cos (x + 2)

    Substituting x = 2π in f(x),

    f(2π) = cos (2π+ 2)

    = cos (2)

    Substituting x = 0 in f(x),

    f(0) = cos (0 + 2) = cos 2

    Here, only one image of f(x) is obtained for 0 and 2π.

    Thus, ‘f’ is not one-one.

    Also, ‘f’ is not one-one onto.

    Therefore, f-1: R → R does not exist.

    RBSE Maths Chapter 1: Exercise 1.3 Textbook Important Questions And Solutions

    Question 13: Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

    (i) a*b = a, on N

    (ii) a*b = a + 3b, on N

    (iii) a*b = a/b, on Q

    (iv) a*b = a – b, on R

    Solution:

    (i) a*b = a, on N

    Here, * is a binary operation because a, b ∈ N

    a*b = a ∈ N

    Here, a*b ∈ N

    Hence, * is a binary operation.

    (ii) a*b = a + 3b ∈ N

    Here, * is a binary operation because 1 ∈ N, 2 ∈ N.

    Thus, 1 + 3 × 2 = 1 + 6 = 7 ∈ N

    (iii) (iv) a*b = a/b ∈ Q

    Here, a*b is not a binary operation, this can be shown as:

    Let a = 22 ∈ Q and b= 7 ∈ Q

    a/b = 22/7 = π ∉ Q

    Thus, 7, 22 ∈ Q but 22/7 ∉ Q

    (iv) a*b = a – b ∈ R

    Here, * is a binary operation because,

    a ∈ R, b ∈ R

    ⇒ a – b ∈ R, ∀ a, b ∈ R

    Question 14: For each binary operation * defined below, determine whether it is commutative or associative?

    (i) * on N where a*b = 2ab

    (ii) * on N where a*b = a + b + a2b

    (iii) * on Z where a*b = a – b

    (iv) * on Q where a*b = ab + 1

    (v) * on R where a*b = a + b – 7

    Solution:

    (i) Given a*b = 2ab

    Commutativity: Let a, b ∈ N

    a*b = 2ab

    = 2b.a

    = b*a

    So, a*b = b*a

    ∴ * is a commutative operation.

    Associativity: Let a, b, c ∈ N

    (a*b)*c = 2(ab)*2c = 2ab + c

    = 2c*2(ab)

    = 2c +ab

    a*(b*c) = 2a*2(bc) = 2a + bc

    2ab + c ≠ 2a + bc

    It is clear that (a*b)*c ≠ a*(b*c)

    So, (a*b)*c is not an associative operation.

    Hence, a*b = 2ab is commutative but not associative.

    (ii) Given a*b= a + b + a2b

    Commutativity: Let a, b ∈ N

    a*b = a + b + a2b

    b*a = b + a + b2a

    a*b ≠ b*a .

    So, * is not a commutative operation.

    Associativity: Let a, b, c ∈ N

    (a*b)*c = (a + b + a2b)*c

    a*(b*c) = a*(b + c + b2c)

    t is clear that (a*b)*c ≠ a*(b*c)

    So * is not an associative operation.

    Hence, a*b = a + b + a2b is neither commutative nor associative.

    (iii) Given, a*b = a – b

    Commutativity:

    a*b = a – b, (a, b ∈ Z)

    b*a = b – a, (a, b ∈ Z)

    a*b* ≠ b*a

    So * is not a commutative operation.

    Associativity :

    (a*b)*c = (a – b)*c

    = a – b – c

    a*(b*c) = a*(b-c)

    = a – b + c

    ∵ (a*b)*c ≠ a*(b*c)

    So, it is not an associative operation.

    It is clear that

    a*b = a – b is neither commutative nor associative.

    (iv) Given, a*b = ab + 1

    Commutativity: Let a, b ∈ Q

    a*b = ab + 1 and : b*a = ba + 1

    ⇒ a*b = b*a

    ∴ It is commutative.

    ∴ Addition and multiplication of rational numbers is commutative.

    Associativity: Let a, b, c ∈ Q

    (a*b)*c = (ab + 1)*c

    = ab + 1 + c

    (b*c)*a = (bc + 1) +a

    = (a*b)*c ≠ (b*c)*a

    So, * is not associative.

    It is clear from above that a*b = ab + 1 is commutative but not associative.

    (v) Given, a*b = a + b – 7

    Commutativity: In R,

    a*b = a + b – 7

    = b + a – 7

    = b*a’

    Associativity :

    (a*b)*c = (a + b – 7)*c

    = (a + b – 7) + c – 7

    = a + b + c – 14

    a*(b*c) = a*(b + c – 7)

    = a + (b + c – 7) – 7

    = a + b + c – 14

    So, (a*b)*c = a*(b*c)

    Hence, it is clear that a*b = a + b – 7 are commutative and associative.

    Question 15: If in a set of integers Z is an operation * is defined as *, a*b = a + b + 1, ∀ a, b ∈ Z, then prove that * is commutative and associative. Also, find its identity element. Find the inverse of any integer.

    Solution:

    Given,

    a*b = a + b + 1, ∀ a, b ∈ Z

    Commutativity:

    a*b = a + b + 1

    a*b = b + a + 1

    = b*a

    ∴ a*b = b*a

    ∴ * is a commutative operation.

    Associativity:

    (a*b) * c = (a + b + 1)*c

    = a + b + 1 + c +1

    a + b + c + 2

    Again a*(b*c) = a*(b + c + 1)

    = a + b + c + 1 + 1

    = a + b + c + 2

    a*(b*c) = (a*b)*c

    ∴ * is associative operation

    Identity:

    If e is identity element, then a*e = a.

    ⇒ a + e + 1 = a

    ⇒ e = -1

    Thus, – 1 ∈ Z is an identity element.

    Inverse:

    Let x be the inverse of a.

    By definition,

    a*x = -1 [∵ – 1 is identity]

    ⇒ a + x + 1 = -1

    ⇒ x = -(a + 2) ∈ Z

    Inverse element a-1 = -(a + 2).

    Question 16: A binary operation defined on a set R-{1} is as follows:

    a*b = a + b – ab, ∀ a, b ∈ R – {1}

    Prove that * is commutative and associative. Also, find its identity element and find inverse of any element a.

    Solution:

    Given,

    a, b ∈ R – {1}

    a*b = a + b – ab

    = b + a – ba

    = b*a

    ∴ * is a binary operation.

    Again, (a*b)*c = (a + b – ab)*c

    = (a + b – ab) + c – (a + b – ab)c

    = a + b – ab + c – ac – bc + abc

    = a + b + c – ab – bc – ac + abc….(i)

    a*(b*c) = a*(b + c – bc)

    = a + (b + c – bc) – a (b + c – bc)

    = a + b + c – bc – ab – ac + abc

    = a + b + c – ab – bc – ac + abc….(ii)

    From (i) and (ii),

    (a*b)*c = a*(b*c)

    ∴ * is an associative operation.

    Let e be the identity of *, then for a ∈ R,

    a*e = a (from definition of identity)

    ⇒ a + e – ae = a

    ⇒ e(1 – a)= 0

    ⇒ e = 0 ∈ R – {1}

    ∵ 1 – a ≠ 0

    ∴ 0 is identity of *.

    Let b be the inverse of a.

    a*b = e

    a + b – ab = 0.e

    b – ab = -a

    b(1 – a) = -a

    ⇒ b = -a/)1 – a)

    or

    b = a/(a – 1)

    Therefore, the inverse of a is b, then b = a-1 = a/(a – 1).

    RBSE Maths Chapter 1: Additional Important Questions And Solutions

    Question 1: If f : R → R, f(x) = 2x – 3; g : R → R, g(x) = x3 + 5, then the value of (fog)-1(x) is:

    (a) [(x + 7)/2]1/3

    (b) [x – (7/2)]1/3

    (c) [(x – 2)/7]1/3

    (d) [(x – 7)/2]1/3

    Solution:

    Correct answer: (d)

    Given,

    f: R → R, f(x) = 2x – 3

    g: R → R, g(x)= x3 + 5

    Now, (f∘g)(x) = f[g(x)]

    = f(x3 +5)

    = 2(x3 + 5) – 3

    = 2x3 + 10 – 3

    = 2x3 + 7

    Let y = (f∘g)(x) = 2x3 + 7

    ∴ (f∘g)-1(y) = x = [(y – 7)/2]1/3

    ∴ (f∘g)-1(x) = [(x – 7)/2]1/3

    Question 2: If f(x) = x/(1 – x) = 1/y, then the value of f(y) is

    (a) x

    (b) x – 1

    (c) x + 1

    (d) (1 – x)/(2x – 1)

    Solution:

    Correct answer: (d)

    Given,

    f(x) = x/(1 – x) = 1/y

    ⇒ x/(1 – x) = 1/y

    ⇒ y = (1 – x)/x

    f(y) = y/(1 – y) = [(1 – x)/x] / [1 – (1 – x)/x]

    = [(1 – x)/x] / [(x – 1 + x)/x]

    = (1 – x)/(2x – 1)

    Question 3: If f(x) = (x – 3)/(x + 1), then the value of f[f{f(x)}] is equal to

    (a) x

    (b) 1/x

    (c) -x

    (d) -1/x

    Solution:

    Correct answer: (a)

    Given,

    f(x) = (x – 3)/(x + 1)

    f[f{f(x)] = f[f{(x – 3)/(x + 1)}]

    = f{[(x – 3)/(x + 1) – 3] / [(x – 3)/(x + 1) + 1]}

    = f{[(x – 3 – 3x – 3)/(x + 1)] / [(x – 3 + x + 1)/(x + 1)]

    = f[(-2x – 6)/(2x – 2)]

    = f[(-x – 3)/(x – 1)]

    = [(-x – 3)/(x – 1) – ] / [(-x – 3)/(x – 1) + 1]

    = [(-x – 3 – 3x + 3)/(x – 1)] / [(-x – 3 + x – 1)/(x – 1)]

    = -4x/(04)

    = x

    Question 4: If f(x) = cos(log x), then the value of f(x).f(y) – (1/2) [f(x/y) + f(x.y)] is

    (a) -1

    (b) 0

    (c) 1/2

    (d) -2

    Solution:

    Correct answer: (b)

    Given,

    f(x) = cos(log x)

    f(x).f(y) – (1/2) [f(x/y) + f(x.y)]

    = cos(log x).cos(log y) – (1/2) [cos(log x/y) + cos(log xy)]

    = cos(log x).cos(log y) – (1/2) [cos(log x – log y) + cos(log x + log y)]

    = cos(log x).cos(log y) – (1/2) [2 cos(log x) cos(log y)]

    = cos(log x).cos(log y) – cos(log x) cos(log y)

    = 0

    Question 5: If f : R → R, f(x) = 2x + 1 and g : R → R, g(x) = x3, then (gof)-1(27) is equal to

    (a) 2

    (b) 1

    (c) -1

    (d) 0

    Solution:

    Correct answer: (b)

    Given,

    f(x) = 2x + 1, g(x) = x3

    Let (g∘f)-1(27) = x

    ⇒ (g∘f)(x) = 27

    g[f(x)] = 27

    g(2x + 1) = 27

    (2x + 1)3 = 27

    2x + 1 = (27)1/3

    2x + 1 = 3(3 x 1/3)

    ⇒ 2x + 1 = 3

    2x = 3 – 1 = 2

    Therefore, x = 1

    Question 6: If f : R → R and g : R → R where f(x) = 2x + 3 and g(x) = x2 + 1, then the value of (gof)(2) is

    (a) 38

    (b) 42

    (c) 46

    (d) 50

    Solution:

    Correct answer: (d)

    Given,

    f(x) = 2x + 3 and g(x) = x2 + 1

    (g∘f)(2) = g[f(2)]

    = g(2 x 2 + 3)

    = g(7)

    = (7)2 + 1

    = 49 + 1

    = 50

    Question 7: If an operation * defined on Q0, as *, a*b = ab/2, ∀ a, b ∈ Q0, then the identity element is

    (a) 1

    (b) 0

    (c) 2

    (d) 3

    Solution:

    Correct answer: (c)

    Given,

    a*b = ab/2, ∀ a, b ∈ Q0

    Let e be an identity element.

    Now, a ∈ Q0

    a*e = a

    ⇒ ae/2 = a

    e = 2

    Question 8: A binary operation defined on R as a*b = 1 + ab, ∀ a, b ∈ R, then * is

    (a) commutative but not associative

    (b) associative but not commutative

    (c) neither commutative nor associative

    (d) commutative and associative

    Solution:

    Correct answer: (a)

    Given,

    a*b = 1 + ab, ∀ a, b ∈ R

    Commutativity:

    a*b = 1 + ab

    = 1 + b.a

    = b*a

    We know that the set of real numbers is commutative.

    ⇒ a*b = b*a

    ∴ It is commutative.

    Associativity:

    (a*b)*c = (1 + ab)*c

    = (1 + ab)c

    = 2 + abc

    a*(b*c) = a*(1 + bc) = 1 + a*(1 + bc)

    = 1 + a + abc

    Thus, (a*b)*c ≠ a*(b*c)

    Hence, * operation is not associative.

    Question 9: For the given three functions justify the associativity of composite function operation.

    f: N → Z0, f(x) = 2x; g: Z0 → Q, g(x) = 1/x; h: Q → R, h(x) = ex

    Solution:

    Given,

    f: N→ Z0

    g: Z0 → Q

    h: Q → R

    Thus, h∘(g∘f): N → R

    and (h∘g)∘f : N → R

    Hence, the domain and co-domain of h∘(g∘f) and g∘(h∘f) are the same because both the functions are defined from N to R.

    That means, we have to prove[h∘(g∘f)](x) = [(h∘g)∘f](x), ∀ X ∈ N[h∘(g∘f)](x)= h[(g∘f)(x)]

    = h[g{f(x)}]

    = h[g(2x)]

    = h(1/2x)

    = e(1/2x)[h∘(g∘f)](x) = e(1/2x) ….(i)

    Now, [(h∘g)∘f](x) = (h∘g)f(x) = (h∘g)(2x) = h[g(2x)] = h(1/2x)[(h∘g)∘f](x) = e(1/2x) ….(ii)

    From (i) and (ii),

    (h∘g)∘f = h∘(g∘f)

    Therefore, the associativity of f, g, h is proved.

    Question 10: If f: R → R, f(x) = sin x and g: R → R, g(x) = x2, then find (g∘f)(x).

    Solution:

    Given,

    f: R → R, f(x) = sin x

    g: R → R, g(x) = x2

    (g∘f)(x) = g[f(x)]

    = g(sin x)

    = (sin x)2

    = sin2x

    Therefore, (g∘f)(x) = sin2x

    Question 11: If f: R → R, f(x) = x2 – 5x + 7, then find the value of f-1(1).

    Solution:

    Given,

    f: R → R, f(x) = x2 – 5x + 7

    Let f-1(1) = x

    ⇒ f(x) = 1

    ⇒ x2 – 5x + 7 = 1

    ⇒ x2 – 5x + 6 = 0

    ⇒ x2 – 2x – 3x + 6 = 0

    ⇒ x(x – 2) – 3(x – 2) = 0

    ⇒ (x – 2)(x – 3) = 0

    ⇒ x – 2 = 0, x – 3 = 0

    ⇒ x = 2, x = 3

    Therefore, f-1(1) = {2, 3}

    Join Education HubLearning Program